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Introduction:   

In   our   paper,   we   are   conducting   a   survey   of   intersections   of   algebra   and   statistics   which   

does   not   rely   on   advanced   statistics.   In   the   field   of   theoretical   mathematics,   there   is   a   body   of   

research   online   surrounding   the   translation   of   traditional   statistical   methods   and   equations   into   

formulations   using   Abstract   Algebra   ideas.   For   example,   randomized   experimental   design   in   

statistics   can   be   understood   by   intersections   of   varieties,   and   statistical   Fisher   information   can   be   

understood   as   a   Riemannian   metric   on   statistical   models.   We   collected   a   breadth   of   the   current   

results   in   the   field,   and   in   the   following   paper,   we   touch   on   each   intersection   of   algebra   and   

statistics   that   we   found   academic   writing   on,   exploring   both   the   traditional   statistics   approach   

and   the   algebra-related   approach   to   understanding.   The   first   topic,   which   appeared   across   most   

of   the   papers   we   surveyed,   concerns   contingency   tables.   

  

2x2   Contingency   Tables:     

One   of   the   first   techniques   learned   in   statistics   is   the   use   of   2x2   contingency   tables,   which   

can   be   applied   to   situations   in   which   one   is   looking   to   determine   whether   or   not   two   factors   are   

related.   In   classic   statistics,   the   following   formula   is   used   to   calculate   a   z-score:   

   (x )  z =   ­ μ ÷ σ  



The   z-score   can   be   then   compared   to   a   normal   distribution   curve   to   determine   the   

likelihood   of   the   factors   appearing   related   by   random   chance   alone.   The   normal   distribution   

curve   is   considered   unconditional,   meaning   that   it   is   not   dependent   on   the   selected   sample   and   is   

applied   generally   (Aoki   et   al).   In   cases   where   there   is   a   large   sample   size   that   is   being   

generalized   to   a   population   of   an   unknown   size,   having   an   unconditional   normal   distribution   

curve   is   very   helpful.   However,   the   application   of   the   normal   distribution   curve   does   not   always   

fit   exactly.   For   example,   in   cases   where   the   sample   size   is   very   small,   it   is   unlikely   for   the   data   to   

form   a   normal   distribution,   even   if   the   two   factors   are   not   related.   

In   algebraic   statistics,   the   joint   probability   function   circumvents   the   z-score   step   entirely,  

and   instead   results   in   a   direct   probability   that   the   two   functions   are   related.     
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In   this   expression,   we   take   the   probability   of   their   being    x    successes   in   trials   for   the  n1  

first   variable   being   tested,   and   the   probability   of   their   being    y    successes   trials,   and   multiply  n2  

them   together   to   get   the   probability   of   both   happening   at   once.     

There   are   both   similarities   and   differences   in   each   approach.   For   example,   both   classic   

statistics   and   algebraic   statistics   utilize   a   null   hypothesis   from   which   the   resulting   statistic   is   

compared.   In   classic,   the   null   hypothesis   for   a   two-variable   contingency   table   is   the   idea   that   

.   In   algebraic   statistics,   however,   the   variable   used   to   determine   statistical   significance  p   p1 =   2   

is    X .   The   following   function,   an   adaptation   of   the   previous   joint   probability   test,   is   known   as   

Fisher’s   exact   test,   referred   to   as   such   because   the   significance   is   determined   by   hypergeometric   

distribution,   and   is   thus   conditional   to   the   sample   size.   The   conditional   distribution   of   X   given   T   

is   as   follows:     
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Where   .   As   such,   the   equation   simplifies   the   data   into   a   product   of   a   single  t = x + y  

variable    x ,   to   find   it’s   conditional   distribution.   The   equation   thus   relies   on   ,   the   probability   of  p1  

x,    rather   than   fixing   This   resulting   distribution   depends   on   X,   and   is,   notably,   not  . p1 = p2  

symmetric   when   This   helps   make   the   resulting   region   of   rejection   for   the   null  = .  n1 / n2  

hypothesis   unbiased.     

However,   for   both,   increasing   the   sample   size   can   strengthen   the   conclusion.   Because   the   

algebraic   statistics   approach   maps   to   a   hypergeometric   distribution,   rather   than   to   a   binomial   

distribution,   it   is   more   applicable   in   different   kinds   of   calculations.     

  

Hypergeometric   vs.   Binomial   Distribution   

To   delve   more   into   the   difference   between   binomial   and   hypergeometric   distributions,   the   

binomial   distribution   is   often   used   to   estimate   the   proportion   of   a   larger   population   by   drawing,   

without   replacement,   a   smaller   sample   from   the   population.   A   cumulative   binomial   distribution   

is   represented   by   the   following:     

 (X ; n, p)  .P ≤ k     =   ∑
k

i=0
( ) p (1 )  for k , , ..,i
n i ­ p n­i = 0 1 . n   

In   this   model,    n    refers   to   the   number   of   trials   conducted,   and    p    the   success   probability.   

Notice   that    np    is   the   mean   number   of   successes.   The   distribution   shows   the   probability   of   there   

being    i    successes   for   all   potential   values   of    i.    When    p =0.5,   the   distribution   is   symmetric,   since   

there   is   an   equal   likelihood   of   success   and   failure.   The   larger   the   value   of    n,    the   more   the   actual   

data   will   resemble   the   theoretical   distribution   based   on    p.    Generally,   binomial   distributions   are   



recommended   for   situations   where    n    is   large,   and   the   exact   size   of   the   population   is   unknown.   

This   is   helpful   in   cases   where   researchers   want   to   generalize   results   to   a   larger   population,   such   

as   in   drug   trials.     

  The   binomial   distribution   is   not   always   appropriate   in   cases   in   which   the   sample   size   is   

being   selected   from   a   population   of   a   known   size,   or   a   smaller   population   (Krishnamoorthy).   In   

those   cases,   a   hypergeometric   distribution   is   used.   A   hypergeometric   distribution   is   used   to   

determine   the   probability   of   getting   a   specific   result   from   a   known   sample   size.   For   example,   

suppose   we   had   a   collection   of   twelve   tiles,   half   of   which   were   yellow,   half   of   which   were   green.   

If   we   were   to   draw   four   tiles   at   random,   a   hypergeometric   distribution   could   tell   us   the   

probability   that   all   of   the   tiles   we   drew   were   yellow.     

For   a   single   selection,   the   probability   of   achieving   a   specific   outcome   is   given   by   

 (x; N , n, k)  [kC ][N C ]  [NC ]  h       =   x ­ k n­x ÷   n  

and   the   cumulative   distribution   is   given   by   
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Where   signifies   the   number   of   ways    i    nondefective   items   can   be   selected   from   a  ( )i
M  

sample   size   of    M,    and   is   the   number   of   ways   defective   items   can   be   selected   from   a  ( )n­i
N­M    n ­ i  

sample   size   of    .   The   cumulative   distribution   gives   us,   for   each    k,    the   probability   of   M ­ N  

observing   that   many   nondefective   items   in   a   sample   of   size    n.    

Notice   that   this   equation   only   works   when   the   values   of    M    and    N,    the   total   number   of   

nondefective   and   defective   items,   respectively,   are   known.   As   such,   while   the   hypergeometric   

distribution   is   more   accurate   for   the   cases   where   it   applies,   particularly   with   small   sample   sizes,   

the   results   do   not   map   to   a   population   of   an   unknown   size.     



While   there   are   some   cases   in   which   the   hypergeometric   and   binomial   distributions   line   

up,   they   can   differ   greatly.   Notably,   they   are   more   similar   in   cases   where   sample   size   is   large,   

when   the   binomial   distribution   is   generally   considered   more   accurate,   than   in   cases   in   which   the   

sample   size   is   small.     

  

Joint   Probability   Function:   

When   looking   at   a   2x2   contingency   table,   and   further   at   larger   tables,   the   total   probability   

for   all   of   the   cells   of   the   table   is   always   going   to   be   one.   In   that,   we   can   define   the   different   cells   

,   where    i    corresponds   to   the   first   variable   being   tested,   and    j    corresponds   to   the   second,  pij  

wherein   there   are   two   potential   outcomes   for   each.   Note   that,   since   every   outcome   is   going   to   fit   

into   one   of   the   cells   of   the   contingency   table,   

.  ∑
2

i,j=1
pij = 1  

From   there,   it   is   possible   to   generate   a   joint   probability   function    X    for   the   table,   wherein   

X   ,   given   by  {X , X , X , X } =   11   12   21   22  

 (x) p p p pp = ( )n
x ,x , x , x11 12 21 22 11

x11 12
x12 21

x21 22
x22  

Where   we   define    x    as   the   frequency   vector.    x    is   a   vector   which   shows   the   strength   of   the   

probability   of   each   individual   outcome   on   the   table.   These   results   can   be   further   generalized   to   

calculate   the   probability   of   functions   on   contingency   tables   with   more   than   two   variables   in   the   

same   fashion.     

  

Experimental   Design:   



“Experimental   design   is   defined   simply   as   the   choice   of   sites,   or   observation   points,   at   

which   to   observe   a   response,   or   output”   (Gibilisco   159)   In   choosing   these   points,   we   can   view   

the   task   of   selecting   observation   points   as   equivalent   to   selecting   algebraic   varieties.     

One   example   of   experimental   design   where   algebra   can   prove   extremely   useful   is  

population   sampling   in   ecological   statistics.   In   traditional   statistics,   to   determine   the   population   

in   an   area,   rather   than   counting   every   member   of   a   species,   statisticians   approach   census   by   

random   sampling:   they   may   pick   many   random   points   across   the   whole   habitat,   or   section   off   the   

habitat   and   sample   only   some   sections,   or   sample   randomly   with   more   random   points   in   some   

areas   based   on   expected   population   density.    

Algebraic   varieties   particularly   apply   in   the   last   sampling   process,   when   it   comes   to   

density   estimates.   Scientists   may   draw   lines   (transects)   across   the   habitat,   then   measure   the   

distance   of   certain   members   of   the   population   from   the   transect.    Reconstruction    is   the   process   of   

then   finding   functions   which   describe   the   populations’   relationship   to   the   transect,   to   determine   

population   density.   When   scientists    reconstruct    to   find   polynomial   functions   which   describe   the   

population   density   in   an   area,   they   are   performing   interpolation   to   find   polynomial   functions   and   

their   corresponding   varieties   (Maruri-Aguilar   160).     

“Interpolation   is   the   construction   of   a   function    f(x)    that   coincides   with   observed   data   at    n   

given   observation   points.”   For   our   points    D    ,   and   our   observed   values  {d , ... , d }   =   1     n ∈ ℝk  

,   “we   build   a   function   such   that     for    i    =   1,..., n ”   (Maruri-Aguilar   161).  , ..,  y1 . yn ∈ ℝ
  (d )  yf i =   i  

Another   approach   to   interpolation   by   scholars   Pistone   and   Wynn   in   1996   builds   “polynomial   

interpolators”   by   examining   an   isomorphism   between     where    D    represents   our   φ : D→ ℝ  

experimental   design,   and   the   quotient   ring     (Maruri-Aguilar   162).   Our   final  [x , .., ]   I(D)  ℝ 1 . xk /  



sampling   comes   from   a   selection   of   points   from   the   resultant   varieties   of   the   polynomials   we’ve   

found   through   interpolation.     

In   summary,   using   algebraic   geometry,   we   can   find   random   observation   points   by   

randomly   sampling   varieties,   taken   from   polynomials   we   derive   by   interpolating   over   a   research   

region   (in   the   case   of   the   example   above).   This   provides   a   standardized   method   for   randomly   

sampling   in   statistics   using   a   basis   of   algebraic   theory.     

In   Notari’s   article   on   the   subject,   he   notes   that   the   similarity   in   understanding   between   

random   sampling   in   experimental   design   and   algebraic   varieties   is   that   “points   in   a   cloud   are   

moved   towards   the   common   point   along   straight   lines,”   which   we   see   with   the   concept   of   

interpolation   on   the   transects   (Notari   201).   However,   he   reveals   several   ongoing   issues   with   this   

application   of   Algebraic   Statistics   in   relation   to   confounding   variables.   In   statistics,   confounding   

variables   are   variables   which   aren’t   controlled   or   examined   in   the   experiment,   but   which   may   

affect   the   result.   For   example,   measuring   car   speed   with   drivers   and   car   varieties   as   your   

variables,   ice   on   the   road   would   be   a   confounding   variable.   Notari   notes   that   “a   satisfactory   

description   of   the   aliasing   structure   of   a   design   with   replicated   points”   is   currently   not   available,   

touching   on   a   more   complex   subject   in   the   article   of   when   we   have   duplicate   or   near   duplicate   

points   (a   concept   common   in   statistics   but   which   doesn’t   mesh   well   with   the   polynomial   function   

approach).     

  

The   Fisher   Information   Metric:   

“ In   the   1940s   Rao   and   Jeffreys   observed   that   Fisher   information   can   be   seen   as   a   

Riemannian   metric   on   a   statistical   model”    (Gibilisco   et   al.).   In   the   following   sections,   we   

explicate   this   observation   with   definitions   and   examples.   A   Riemannian   metric   is   a   general   



operation   on   a   space   with   some   requirements;   Fisher   information   as   an   operation   on   statistical   

models   as   spaces   satisfies   the   requirements   of   a   Riemannian   metric,   so   all   results   about   

Riemannian   metrics   in   general   automatically   hold   for   Fisher   information   on   a   statistical   model.   

  

Riemannian   metrics:   

“ Suppose   for   every   point    x    in   a   manifold    m ,   an   inner   product   < , >x   is   defined   on   a   ·  ·  

tangent   space   of    M    at    x .   Then   the   collection   of   all   these   inner   products   is   called   the  MT x  

Riemannian   metric”   (Weisstein).   The   expression   < , >x   uses     as   a   placeholder   for   an   unnamed   ·  ·  ·  

function   argument.   In   this   case—as   implied   by   the   resemblance   to   inner   product   notation,   and   

more   directly   stated   elsewhere   in   the   definition—those   arguments   are   elements   of   the   tangent   

space   surrounding   x,   while   x   is   a   point   in   the   manifold.   In   effect,   this   is   a   function   with   

nonstandard   syntax.   Using   standard   function   notation,   we   could   write   this   as   a   function   f(u,v,x),   

where   u   and   v   are   names   for   the   previously   unnamed   vector   arguments.   The   criteria   for   inner   

products   are   that   for   all   vectors    u,v,w    and   scalars    a :     

(1)    , , ,< u + v w >   =   < u w >   +   < v w >  

(2)    u, a ,< a v >   =   < u v >  

  (3)     and   , ,< u v >   =   < v u >   

(4)      and   equal   only   if     (Renze   et   al.),   that   is,    , 0  < v v >   ≥   v = 0  ≠ 0 ,  0  v ⇒   < v v > ≠  

We   can   think   of   the   dot   product   in     as   a   first   example.   The   manifold   is   ,   the   tangent   ℝ2  ℝ2  

space   is      for   all    x ,    and   the   inner   product   is   defined   by  R2  

.   We   can   now   observe   that   the   dot   product   satisfies   these  , y ), (x , y )   x x   y y< (x1   1   2   2 > x =   1 2 +   1 2  

properties   in   .   We   get   (1)   and   (2)   from   the   distributive   axioms   of   linear   algebra,   (3)   follows   ℝ2  

from   commutativity,   and   (4)   arises   from   the   fact   that   for   all   real    a ,      and   equal   only   if   a2 ≥ 0  



  .   Our   justification   for   the   dot   product   serving   as   a   riemannian   metric   on     relies   on   our   a = 0  ℝ2  

field’s   commutativity   and   a   property   about   squares   in   that   field.   We   can   thus   generalize   from   the   

dot   product   on     to   the   dot   product   on     where    k    is   a   commutative   field   with   for   all    a    in    k ,   ℝ2 kn  

and   .   a2 ≥ 0  ≠ 0   ≠ 0  a ⇒ a2  

Gorodski   defines   a   Riemanian   metric   as   “a   family   of   smoothly   varying   inner   products   on   

the   tangent   spaces   of   a   smooth   manifold”,   notably   including   smoothness   as   an   additional   

requirement.   This   precludes,   for   example,   the   family   of   functions     if    x    is   on  , v    < u   > x = u · v  

the   rational   lattice   and   2 u  v    otherwise,   defined   on   the   tangent   spaces   of     around    x .   · R2  

Any   inner   product   space,   a   vector   space   with   an   inner   product   operation,   is   an   example   of   

a   Riemannian   metric   on   a   space.   The   metric   is   simply   defined   as   for   all    x .   But  , v    < u   > x = u · v  

we   can   find   examples   of   Riemannian   metrics   on   a   space   that   are   not   also   inner   product   spaces.   

For   example,     on     is   smooth   as   it   is   the   product   of   two   smooth  , v   u )(||x||  1)  < u   > x = ( · v +    ℝ2  

functions,   and   at   each    x ,    <  ,  >x    is   an   inner   product   because   it   is   a   positive   scalar   multiple   of   the   ·  ·  

dot   product   which   is   an   inner   product.   To   formally   show   this   we   can   apply   commutativity   of   

multiplication   in   a    k -algebra   to   prove   each   of   the   properties   of   an   inner   product   remain   satisfied   

when   the   product   is   multiplied   by   a   positive   constant.   

  

Statistical   model:   

“A   statistical   model   is   a   set   of   probability   distributions   on   the   sample   space   S.   A   

parameterized   statistical   model   is   a   parameter   set    together   with   a   function   ,  (S)  P : Θ→ P  

which   assigns   to   each   parameter   point     a   probability   distribution     on    S    ”   (McCullagh).   θ ∈ Θ P θ  

We   will   be   working   with   parameterized   statistical   models.   Notably   these   models   are    not   

probability   distributions,   but   rather   functions   from   parameters   to   probability   distributions.   This   



allows   us   to   describe   a   collection   of   potential   distributions.   For   example,   a   statistical   model   of   

two   coins   parameterized   by   the   odds   of   each   landing   on   heads   where   ,   is    [0, ]x[0, ]Θ =   1 1  

P((a,b))   =   {HH:   ab,   HT:   a(1-b),   TH:   (1-a)b,   TT:   (1-a)(1-b)}.     

  

Fisher   information:   

Fisher   information   is   a   function   of   a   statistical   model   and   a   parameter   that   represents   how   

accurately   the   parameter   can   be   reconstructed   from   an   observation.   In   other   words   it   expresses   

how   much   information   an   observation   carries   about   the   parameter.   It   is   defined   by   

  (Wolpert).   The   expression     tells   us   how   rapidly   the   probability  (θ)  E  I =   θ [ ∂θ2
∂ ln P (x|θ)2 ] ∂θ2

∂ ln P (x|θ)2

 

of   observing    X    falls   off   for   slightly   different   ,   and   the   quantifier     gives   us   the   expected  θ [...]Eθ  

value   of   that   “statistic”   for   the   given   .   I   put   “statistic”   in   quotes   here   because   a   formal   statistic  θ  

must   only   depend   on    X ,   not   on   ,   but   this   one   does   not.  θ  

  

Fisher   information   can   be   seen   as   a   Riemannian   metric   on   a   statistical   model:   

We   can   express   the   Fisher   information   function   as   a   Riemannian   metric   using   matrix   

notation   as   ,   where    i    and    j    denote   axes   of   .   In   function   notation,  (θ)  gij = Eθ [ ∂θ ∂θi j

∂ ln P (x|θ)2 ] θ  

.   This   is   a   lot   to   think   about.   Let’s   start   in   the   one  , v E< u v > θ = ∑
 

i
∑
 

j
ui j θ [ ∂θ ∂θi j

∂ ln P (x|θ)2 ]  

dimensional   case.   Here,    g    is   a   1x1   matrix   with   the   element   ,   or   the   inner   product   Eθ [ ∂θ2
∂ ln P (x|θ)2 ]  

;   dot   product   scaled   by   Fisher   information   at   θ.   Provided   the  , vE  < u v > θ = u θ [ ∂θ ∂θi j

∂ ln P (x|θ)2 ]  

statistical   model   is   smooth,   Fisher   information   should   be   smooth.   To   ensure   that   Fischer   

information   is   positive,   we   have   to   add   another   constraint   to   the   statistical   model:   the   



parameterization   must   be   identifiable,   that   is,   distinct   parameters   give   distinct   probability   

distributions   and   equal   probability   distributions   imply   equal   parameters.   This   means   that   every   

parameter   value’s   probability   distribution   is   distinct,   and   so   each   observation   will   bear   some   

information   about   the   parameter   value.   

In   the   multidimensional   case,   the   Fisher   information   becomes   a   matrix,   the   Fisher   

information   matrix,   rather   than   a   scalar,   and   can   be   used   as   a   Riemannian   metric   whenever   we   

have   an   identifiable   probability   distribution.   Further   explication   of   the   multidimensional   case   is   

outside   the   scope   of   this   paper,   however.   
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